CBSE Class 10 Maths: Trigonometry Question
(ππ − ππ)² − (ππ − ππ)² = (ππ − ππ)²
Answer:
a secπ + b tanπ + c = 0
⇒ c = - (a secπ + b tanπ)
and p secπ + q tanπ + r = 0
⇒ r = -(p secπ + q tanπ)
LHS = (ππ − ππ)² − (ππ − ππ)²
= [b(-p secπ - q tanπ) - q(-a secπ - b tanπ)]² - [p(-a secπ - b tanπ) - a(-p secπ - q tanπ)]²
= [-bp secπ - bq tanπ + aq secπ + bq tanπ ]² - [-ap secπ - bp tanπ + ap secπ + aq tanπ]²
= [aq secπ - bp secπ]² - [aq tanπ - bp tanπ]²
= (aq - bp)²sec²π - (aq - bp)²tan²π
= (aq - bp)²[sec²π - tan²π]
= (aq - bp)² [∵ sec²π - tan²π = 1]
No comments:
Post a Comment
We love to hear your thoughts about this post!
Note: only a member of this blog may post a comment.