DIFFERENTIATION OF STANDARD FUNCTIONS
CBSE Class 11 - Mathematics - Limits and Derivatives Part-10
You have learnt theorems of differentiation part-9. Let us proceed further. Here is a list of differentiation of some standard functions:
ddx(constant)=0
ddxkx=k where k is constant
ddx(xn)=nxn−1
ddx(ex)=ex
ddx(ax)=axlogea
ddx(logex)=1x
ddx(logax)=1xlogea
ddx(sinx)=cosx
ddx(cosx)=−sinx
ddx(tanx)=sec2x
ddx(cotx)=−cosec2x
ddx(secx)=secxtanx
ddx(cscx)=−cosecxcotx
ddx(sin−1x)=1√1−x2,−1<x<1
ddx(cos−1x)=−1√1−x2,−1<x<1
ddx(tan−1x)=11+x2
ddx(cot−1x)=−11+x2
ddx(sec−1x)=1|x|√x2−1;|x|>1
ddx(csc−1x)=−1|x|√x2−1;|x|>1
ddx(sinhx)=coshx
ddx(coshx)=sinhx
ddx(tanhx)=sech2x
ddx(cothx)=−csch2x
ddx(sechx)=sechxtanhx
ddx(cschx)=−cschxcothx
ddx(sinh−1x)=1√1+x2
ddx(cosh−1x)=1√x2−1
ddx(tanh−1x)=11+x2
ddx(coth−1x)=1x2−1
ddx(sech−1x)=−1x√1−x2
ddx(csch−1x)=−1|x|√x2+1
ddx(eaxsinbx)=eax(asinbx+bcosbx)=√a2+b2eaxsin(bx+tan−1b/a)
ddx(eaxcosbx)=eax(acosbx−bsinbx)=√a2+b2eaxcos(bx+tan−1b/a)
Ch5: Complex Numbers (Part 1) - Solved Problems
Ch 13 Limits and Derivatives (Q & A ) Part -1
Ch 13 Limits and Derivatives (Q & A) Part - 2
Ch 13 Limits and Derivatives (Q & A) Part - 3
Ch 13 Limits and Derivatives (Q & A) Part- 4
Ch 13 Limits and Derivatives (Q & A) Part-5
Ch 13 Limits and Derivatives (Q & A) Part-6
No comments:
Post a Comment
We love to hear your thoughts about this post!
Note: only a member of this blog may post a comment.