CBSE Class 11 - Mathematics - Limits and Derivatives
Part-3 Algebra of Limits
In the previous post Limits and derivatives Part-2, we get basic ideas of the algebra of limits and also learned about rules and properties of limits.
Let us try to solve few problems:
Q1: Evaluate the given limit $\lim_{r\rightarrow 1} \pi r^2$
Answer: $\lim_{r\rightarrow 1} \pi r^2 = \pi(1)^2 = \pi$
Q2: Evaluate the given limit $\lim_{x\rightarrow 1} \frac{x^3-1}{x-1}$
Answer:
$\lim_{x\rightarrow 1} \frac{x^3-1}{x-1}$
= $ \lim_{x\rightarrow 1} \frac{(x-1)(x^2 + x + 1)}{x-1}$
= $ \lim_{x\rightarrow 1} (x^2 + x + 1) $
= $1^2 + 1 + 1 = 3$
Q3: Evaluate the following limit:
$\lim_{x\rightarrow 2} \frac{x^3-3x+2}{x^2 + x - 6}$
Answer:
$\lim_{x\rightarrow 2} \frac{x^3-3x+2}{x^2 + x - 6}$
=$ \lim_{x\rightarrow 2} \frac{(x-2)(x-1)}{(x-2)(x+3)} $
=$\lim_{x\rightarrow 2} \frac{(x-1)}{(x+3)}$
=$ \frac{2-1}{2+3}$
=$\frac{1}{5}$
Let us prove another theorem
Theorem: For any positive integer n, (or nis any positive rational number)
$\lim_{x\rightarrow a} \frac{x^n-a^n}{x - a} =na^{n-1}$
Proof:
$\because x^n - a^n = (x - a)(x^{n-1} + x^{n-2}a + ... + xa^{n-2} + a^{n-1})$
$\lim_{x\rightarrow a} \frac{x^n-a^n}{x - a} =na^{n-1}$
= $ lim_{x\rightarrow a} \frac{(x - a)(x^{n-1} + x^{n-2}a + ... + xa^{n-2} + a^{n-1})}{x-a}$
= $lim_{x\rightarrow a} (x^{n-1} + x^{n-2}a + ... + xa^{n-2} + a^{n-1})$
= $a^{n-1} + a^{n-2}.a + a^{n-3}.a^2+ ... + a.a^{n-2} + a^{n-1}$
= $a^{n-1} + a^{n-1} + a^{n-1} + ... + a^{n-1} + a^{n-1}$
= $n a^{n-1}$
Q4: Evaluate the given limit $\lim_{x\rightarrow 0}\frac{(x+1)^5 - 1}{x}$
Answer: Let x + 1 = y
Since x→0, therefore y→1
We have,
$\lim_{x\rightarrow 0}\frac{(x+1)^5 - 1}{x}$
$= \lim_{y\rightarrow 1}\frac{y^5 - 1}{y -1}$
Since, $\lim_{x\rightarrow a} \frac{x^n-a^n}{x - a} =na^{n-1}$
= $5.1^{5-1}$
= 5
SETS (VENN DIAGRAMS)
SETS (Operations of Sets)
SETS (NCERT Ex 1.4 Q1-Q5)
SETS (NCERT Ex 1.4 Q6 - Q8)
SETS (NCERT Ex 1.4 Q9 - Q12)
SETS (NCERT Ex 1.5)
SETS (NCERT Ex 1.6)
Laws of Set Operations
Ch2: Relations and Functions (1 Mark Q & A) Part-1
Ch2: Cartesian Product of Two Sets (Important Points)
Ch2: Relations - Domain, Range and Co-Domain (Solved Problems)
Ch5: Complex Numbers (Part 1) - Solved Problems
Maths Annual Test Paper (2018-19)
Maths Annual Test Paper (2020-21)
Maths Term1 MCQs (2021-22)
No comments:
Post a Comment
We love to hear your thoughts about this post!
Note: only a member of this blog may post a comment.