CBSE Class 11 - Mathematics - Limits and Derivatives (Part-2)
Questions and Answers #class11Maths #Limits
In the previous blog post Limits and derivatives Part-1 , we learn
$\lim_{x\rightarrow a} f(x) = l$ and it is called limit of the function f(x)
① The two ways x could approach a number an either from left or from right, i.e., all the values of x near a could be less than a or could be greater than a.
② In this case the right and left hand limits are different, and hence we say that the limit of f(x) as x tends to zero does not exist (even though the function is defined at 0).
Find a limit when f(a) has definite value:
To find limit when f(a) has definite value, then $\lim_{x\rightarrow a} f(x) = f(a)$ i.e. direct substitution.
Q1: Find limits of the following:
⒜ $\lim_{x\rightarrow 0} sin{x}$
⒝ $\lim_{x\rightarrow-1} \frac{x^{10} + x^5 + 1}{x - 1}$
⒞ $\lim_{x\rightarrow 1}\left [ x^3 -x^2 + 1 \right ]$
⒟ $\lim_{x\rightarrow 1}\frac{ax^2 + bx + c}{cx^2 + bx + a}, a + b + c \neq 0$
Answer:
⒜ $\lim_{x\rightarrow 0} sin{x}$
= sin 0 = 0
⒝ $\lim_{x\rightarrow-1} \frac{x^{10} + x^5 + 1}{x - 1}$
= $\frac{(-1)^{10} + (-1)^5 + 1}{-1 - 1}$
= $\frac{1 -1 + 1}{-2}$
= $\frac{-1}{2}$
⒞ $\lim_{x\rightarrow 1}\left [ x^3 -x^2 + 1 \right ]$
= $1^3 -1^2 + 1$ = 1
⒟ $\lim_{x\rightarrow 1}\frac{ax^2 + bx + c}{cx^2 + bx + a}, a + b + c \neq 0$
= $\frac{a(1)^2 + b(1) + c}{c(1)^2 + b(1) + a}$
= $\frac{a + b + c}{c + b + a}$
= $1 \because a + b + c \neq 0$
Find a limit when f(a) is inderminate (e.g. $\frac{0}{0} form$)
When f(a) is inderminate, wew follow different rules or approaches. The simplest one is factorize the numerator and the denominator. Cancel out the common factors and then put x = a.
Q2: Evaluate $\lim_{x \rightarrow 3} \left ( \frac{x^2 - 9}{x - 3} \right )$
Answer:
$ \lim_{x \rightarrow 3} \left ( \frac{x^2 - 9}{x - 3} \right ) $= $\lim_{x \rightarrow 3} \left ( \frac{(x+3)(x-3)}{x - 3} \right )$
= $\lim_{x \rightarrow 3} ( x+3 ) $
= 3 + 3 = 6
Before we go deeper in Algebra of limits, let us go through its theorems and properties:
① Theorem I. Uniqueness theorem
i. If $\lim_{x \rightarrow c^-} f(x) = l \text{ and } \lim_{x \rightarrow c^-} f(x) = l' \text{ then } l = l' $
ii. If $\lim_{x \rightarrow c^+} f(x) = l \text{ and } \lim_{x \rightarrow c^+} f(x) = l' \text{ then } l = l' $
iii. If $\lim_{x \rightarrow c} f(x) = l \text{ and } \lim_{x \rightarrow c} f(x) = l' \text{ then } l = l' $
② Theorem II
$\lim_{x \rightarrow c} f(x) \text{ exists iff } \lim_{x \rightarrow c^-} \text{ and } \lim_{x \rightarrow c^+} \text{ both exist and are equal}$
Properties of Limits
Assume that $\lim_{x \rightarrow a} f(x)$ and $\lim_{x \rightarrow a} g(x)$ exist. Let c be any real number, then the following are true:
① $\lim_{x \rightarrow a}\left [ f(x) \pm g(x) \right ] = \lim_{x \rightarrow a} f(x) \pm \lim_{x \rightarrow a} g(x)$
It means, the limit of a sum or difference is the sum or difference of limits.
② $\lim_{x \rightarrow a}\left [ f(x) g(x) \right ] = \lim_{x \rightarrow a} f(x) \times \lim_{x \rightarrow a} g(x)$
It means the limit of a product is the product of limits.
③ $\lim_{x \rightarrow a}\frac{f(x)}{g(x)} = \frac{\lim_{x \rightarrow a} f(x)}{\lim_{x \rightarrow a} g(x)} \text{ provided } \lim_{x \rightarrow a}g(x) \neq 0$
It says the limit of a quotient is the quotient of limits, provided the denominator does not have a limit 0.
SETS (VENN DIAGRAMS)
SETS (Operations of Sets)
SETS (NCERT Ex 1.4 Q1-Q5)
SETS (NCERT Ex 1.4 Q6 - Q8)
SETS (NCERT Ex 1.4 Q9 - Q12)
SETS (NCERT Ex 1.5)
SETS (NCERT Ex 1.6)
Laws of Set Operations
Ch2: Relations and Functions (1 Mark Q & A) Part-1
Ch2: Cartesian Product of Two Sets (Important Points)
Ch2: Relations - Domain, Range and Co-Domain (Solved Problems)
Ch5: Complex Numbers (Part 1) - Solved Problems
Maths Annual Test Paper (2018-19)
Maths Annual Test Paper (2020-21)
Maths Term1 MCQs (2021-22)
No comments:
Post a Comment
We love to hear your thoughts about this post!
Note: only a member of this blog may post a comment.