NCERT Excercise 6.1
Q1: In Fig. 6.13, lines AB and CD intersect at O. If ∠AOC + ∠BOE = 70° and ∠BOD = 40°, find ∠BOE and reflex ∠COE.
Answer: AB is a straight line and rays OC and OE meets at point O on AB.
∠AOC + ∠COE + ∠BOE = 180°
⇒ 70° + ∠COE = 180° (∵ ∠AOC + ∠BOE = 70°, Given)
⇒ ∠COE = 180° - 70° = 110°
reflex ∠COE = 360° - 110° = 250°
∵ CD is a straight line and rays OE and OB stand on it.
⇒ ∠COE + ∠BOE + ∠BOD = 180°
⇒ ∠BOE = 180° - (∠COE + ∠BOD) = 180° - (110° + 40°)
⇒ ∠BOE = 180° - 150° = 30°
Q2: In Fig. 6.14, lines XY and MN intersect at O. If ∠POY = 90° and a : b = 2 : 3, find c.
Answer: Let ∠POM = a = 2x and ∠XOM = b = 3x such that a:b = 2:3.
∵ XY is a straight line and rays OM and OP stand on it.
⇒ ∠XOM + ∠POM + ∠POY = 180°
⇒ b + a + 90° = 180°
⇒ 3x + 2x = 180° - 90°
⇒ 5x = 90°
⇒ x = 90° / 5 = 18°
∴ a = 2 × 18° = 36° and b = 3 × 18° = 54°
Since MN is a straight line and XY intersects it. ∠XOM and ∠XON forms a linear pair.
⇒ ∠XOM + ∠XON = 180°
⇒ b + c = 180°
⇒ c = 180° - b = 180° - 54° = 126°
Q3: In Fig. 6.15, ∠ PQR = ∠ PRQ, then prove that ∠ PQS = ∠ PRT.
Answer: Line ST is a straight line and PQ meets it at point Q. ∴ ∠PQS and ∠PQR form a linear pair.
⇒ ∠PQS + ∠PQR = 180°
⇒ ∠PQR = 180° - ∠PQS ...(I)
Similarly, line PR meets line ST at R. ∴ ∠PRQ and ∠PRT form a linear pair.
⇒ ∠PRQ + ∠PRT = 180°
⇒ ∠PRQ = 180° - ∠PRT ...(II)
Since ∠PQR = ∠PRQ (Given)
From equations I and II
180° - ∠PQS = 180° - ∠PRT
⇒ ∠PQS = ∠PRT
Q4: In Fig. 6.16, if x + y = w + z, then prove that AOB is a line.
Answer: At point O, angles x, y, z and w makes a complete angle i.e. 360°
⇒ x + y + z + w = 360°
Since x + y = z + w
⇒ x + y + x + y = 360°
⇒ 2x + 2y = 360°
⇒ x + y = 180°
Since x and y form a linear pair, thus AOB is a straight line.
Q5: In the given figure, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray lying between rays OP and OR.
Prove that ∠ROS = ½ (∠QOS – ∠POS).
Prove that ∠ROS = ½ (∠QOS – ∠POS).
Answer: Since OR ⊥ PQ,
∴ ∠POR = 90°, ∠QOR = 90° and ∠POS and ∠SOR are supplementary.
⇒ ∠POS + ∠ROS = 90°
⇒ ∠ROS = 90° - ∠POS ... (I)
Since ∠QOR = 90°
Adding ∠ROS to both sides,
⇒ ∠QOR + ∠ROS = 90° + ∠ROS
⇒ ∠QOS = 90° + ∠ROS
⇒ ∠ROS = ∠QOS - 90° ... (II)
Adding equation I and II,
∠ROS + ∠ROS = 90° - ∠POS + ∠QOS - 90°
⇒ 2 × ∠ROS = ∠QOS - ∠POS
⇒ ∠ROS = ½ (∠QOS – ∠POS)
Q6: It is given that ∠XYZ = 64° and XY is produced to point P. Draw a figure from the given information.
If ray YQ bisects ∠ZYP, find ∠XYQ and reflex ∠QYP.
If ray YQ bisects ∠ZYP, find ∠XYQ and reflex ∠QYP.
Answer: YQ bisects ∠PYZ
⇒ ∠PYQ = ∠QYZ.
PX is a straight line. Ray QY and ZY stand on it.
⇒ ∠PYQ + ∠QYZ + ∠ZYX = 180°
⇒ 2 ∠PYQ + 64° = 180°
⇒ 2 ∠PYQ = 180° - 64° = 116°
⇒ ∠PYQ = 116° / 2 = 58°
∴ ∠PYQ = ∠QYZ = 58°
∠XYQ = ∠QYZ + ∠ZXY = 58° + 64° = 122°
Reflex ∠QYP = 360° - ∠QYP = 360° - 58° = 302°
No comments:
Post a Comment
We love to hear your thoughts about this post!
Note: only a member of this blog may post a comment.